\square
Fifth Semester B.E. Degree Examination, July/August 2021

Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define Alphabet, String and Language. Give an example for each.
(04 Marks)
b. Construct DFA for the following languages defines on $\sum=\{a, b\}$
(i) Set of all strings ending with 'bba'
(ii) Set of all strings beginning with 'ba'
(iii) $\mathrm{L}=\left\{\mathrm{w} \mid \mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and $\left.|\mathrm{w}| \bmod 3 \neq 2\right\}$
(10 Marks)
c. Convert the following NFA to DFA.

SNFA	0	1
$\rightarrow \mathrm{p}$	$\{\mathrm{p}, \mathrm{q}\}$	$\{\mathrm{p}\}$
q	$\{\mathrm{r}, \mathrm{s}\}$	$\{\mathrm{t}\}$
r	$\{\mathrm{p}, \mathrm{r}\}$	$\{\mathrm{t}\}$
$* \mathrm{~s}$	ϕ	ϕ
$* \mathrm{t}$	ϕ	ϕ

(06 Marks)
2 a. Convert the following \in-NFA to DFA [Refer Fig.Q2(a)]

Fig.Q2(a)
(08 Marks)
b. Define regular expression and give two examples of regular expressions, explaining the meaning of each.
(06 Marks)
c. Convert the following regular expressions to \in-NFA.
(i) $a(b+c) * b$
(ii) $a(a b+b a) *$.
(06 Marks)
3 a. State and prove pumping lemma for regular languages and prove that $\mathrm{L}=\left\{0^{\mathrm{n}} 10^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$ is not regular.
b. Consider the following DFA:
(i) Draw the table of distinguishable states
(ii) Construct the minimum state equivalent DFA.

State	Input	
	0	1
$\in \mathrm{~A}$	B	C
B	D	E
C	F	G
$* \mathrm{D}$	D	E
E	F	G
$* \mathrm{~F}$	D	E
$* \mathrm{G}$	F	G

4 a. Define context-free grammar and using the grammar given below, show the derivation tree
for (i) $(\mathrm{a} 101+\mathrm{b} 1) *(\mathrm{a} 1+\mathrm{b})$
(ii) $(\mathrm{a} 1+\mathrm{b} 1) * \mathrm{aa}$
$\mathrm{G}: \mathrm{E} \rightarrow \mathrm{I}|\mathrm{E}+\mathrm{E}| \mathrm{E} * \mathrm{E} \mid(\mathrm{E})$
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{Ia}|\mathrm{Ib}| \mathrm{I} 0 \mid \mathrm{I} 1$
(08 Marks)
b. Define leftmost and rightmost derivations. Draw rightmost derivation for $(\mathrm{a}+\mathrm{b}) *(\mathrm{~b}+\mathrm{c})$.

$$
\begin{aligned}
\mathrm{G}: \mathrm{E} & \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
\mathrm{~T} & \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} \\
\mathrm{~F} & \rightarrow(\mathrm{E})|\mathrm{a}| \mathrm{b} \mid \mathrm{c}
\end{aligned}
$$

(06 Marks)
c. Define ambiguous grammar. Show that the following grammars are ambiguous:
(i) $\mathrm{G}: \mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$
(ii) $\mathrm{G}: \mathrm{S} \rightarrow \mathrm{SS}$

$$
\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{bSa}| \epsilon
$$

(06 Marks)
5 a. Define PDA and construct a PDA to recognize $L=\left\{a^{n} b^{n} \downarrow n \geq 1\right\}$
(i) Construct transition diagram
(ii) Define all parameters of the constructed PDA
(iii) Show using instantaneous description that 'aabb' is accepted.
(12 Marks)
b. Convert the following grammar to PDA.

$$
\begin{aligned}
\mathrm{G}: \mathrm{E} & \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
\mathrm{~T} & \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} \\
\mathrm{~F} & \rightarrow(\mathrm{E})|\mathrm{a}| \mathrm{b} \mid \mathrm{c}
\end{aligned}
$$

Show that ' $a+b * c$ ' is accepted by the PDA.
(08 Marks)
6 a. State and prove pumping lemma for context-free languages. Show that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not a context-free language.
(10 Marks)
b. Eliminate useless symbols in the grammar given below by
(i) Eliminating \in productions.
(ii) Eliminating unit productions
(iii) Eliminate useless symbols.

$$
\begin{aligned}
\mathrm{G}: & \mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BaB} \\
\mathrm{~A} & \rightarrow \mathrm{aA}|\mathrm{BaC}| \mathrm{aaa} \\
\mathrm{~B} & \rightarrow \mathrm{bBb}|\mathrm{a}| \mathrm{D} \\
\mathrm{C} & \rightarrow \mathrm{CA} \mid \mathrm{AC} \\
\mathrm{D} & \rightarrow \epsilon
\end{aligned}
$$

(10 Marks)
7 a. Define Turing Machine and Turing Machine to accept $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$. Show that string 'abc' is accepted.
(12 Marks)
b. Define Posts Correspondence Problem (PCP) and solve the PCP for the following lists, given below:

i	w_{i}	X_{i}
1	i	111
2	10111	10
3	10	0

(08 Marks)
8 Write short notes on:
a. Recursive languages
b. Non-deterministic Turing Machine
c. Mutli-tape Turing Machines
d. Undecidability
(20 Marks)

